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Abstract

We investigate formal power series ideals and their relationship to topological rewriting theory.

Since commutative formal power series algebras are Zariski rings, their ideals are closed for the adic

topology defined by the maximal ideal generated by the indeterminates. We provide a constructive

proof of this result which, given a formal power series in the topological closure of an ideal, consists

in computing a cofactor representation of the series with respect to a standard basis of the ideal. We

apply this result to topological rewriting theory. In this context, two natural notions of confluence

arise: topological confluence and infinitary confluence. We give explicit examples illustrating that

in general, infinitary confluence is a strictly stronger notion that topological confluence. Using

topological closure of ideals, we finally show that in the context of rewriting theory on commutative

formal power series, infinitary and topological confluence are equivalent.
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1. INTRODUCTION

Algebraic rewriting systems are computational models used to prove algebraic properties through
rewriting reasoning. For that, one considers a presentation by generators and relations of an algebraic
system, e.g., a monoid or an algebra, and associate to each relation a rewriting rule, consisting in
simplifying one term of the relation into the other terms of the relation. When the underlying algebraic
system is equipped with the discrete topology, two fundamental rewriting properties are termination,
i.e., there is no infinite rewriting sequence, and confluence, i.e., whenever two finite rewriting sequences
diverge from a common term, then these sequences can be extended by finitely many rewriting steps
to reach a common term. When these two properties hold together, rewriting theory provide effective
methods for computing linear bases, Hilbert series, homotopy bases or free resolutions [1, 8, 9, 12], and
obtain constructive proofs of coherence theorems, from which we deduce an explicit description of the
action of a monoid on a category [5], or of homological properties such as finite derivation type, finite
homological type [10, 14], or Koszulness [13].

Topological rewriting theory is an extension of discrete rewriting, where the underlying set of terms
admits a non-discrete topology. Such topological rewriting systems appear in computer science, in the
context of rewriting over infinitary Σ/λ-terms [4, 11], and in abstract algebra, in the context of rewriting
over commutative formal power series [3]. With this topological framework, it is natural to consider not
only finite rewriting sequences, but also rewriting sequences that converge for the underlying topology,
which brings us to two different notions of confluence: topological and infinitary confluence. Each of
these notions allows us to extend diverging rewriting sequences by infinite rewriting sequences having
a common term as a limit. However, the rewriting sequences diverging from the same term have
different natures: they are assumed to be finite for topological confluence, and they are converging to
limits when one deals with infinitary confluence. Infinitary confluence is a strictly stronger property in
general, explicit examples are given in Section 4.1 of the present paper.

Our objective is to show that in the context of rewriting over commutative formal power series,
topological and infinitary confluence are actually equivalent properties.

Topological closure of commutative formal power series ideals. Proving that infinitary conflu-
ence and topological confluence are equivalent in the context of commutative formal power series requires
to establish that an ideal of a formal power series algebra K[[x1, · · · , xn]] is closed for the (x1, · · · , xn)-
adic topology. The latter, denoted by τδ, is induced by the metric δ which is defined by

δ(f, g) =
1

2val(f−g)
,

where the valuation val(h) of h is the smallest degree of a monomial appearing with a non-zero coefficient
in h. By a general theorem on Zariski rings [15], all the ideals of K[[x1, · · · , xn]] are indeed closed for
the topology τδ. In this paper, we propose a constructive proof of this result, which is based on
rewriting theory. Indeed, in order to show that any ideal I ⊆ K[[x1, · · · , xn]] is equal to its topological
closure I, we fix a finite standard basis G of I, i.e., a generating set of I that induces a topologically
confluent rewriting system over K[[x1, · · · , xn]]. Such standard bases have the property that their
leading monomials, for a given order on monomials, divide leading monomials of all series in I. In
Proposition 3.1.1, we show how the definition of the metric δ implies that the set of leading monomials
of I and I are equal when the order on monomials is compatible with the degree, in the sense that it is
increasing with respect to the degree. From this, given a commutative formal power series f in I, we get
a procedure for eliminating monomials in f using G. This procedure constructs at each step a cofactor
representation with respect to G that converges to f . More explicitly, for each si ∈ G, this yields a

coefficient f
(∞)
i ∈ K[[x1, · · · , xn]] proving that f is indeed in I, as stated in our first contribution:
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Theorem 3.1.6. Let I ⊆ K[[x1, · · · , xn]] be a formal power series ideal, G = {s1, · · · , sℓ}
be a finite standard basis of I with respect to a monomial order which is compatible with the
degree, and f be an element in the topological closure of I for the (x1, · · · , xn)-adic topology.

Then, the limit coefficients
(

f
(∞)
1 , · · · , f

(∞)
ℓ

)

of f relative to G verify:

f = f
(∞)
1 s1 + · · ·+ f

(∞)
ℓ sℓ.

In particular, I is closed for the (x1, · · · , xn)-adic topology.

Infinitary and topological confluence for commutative formal power series. As stated above,
infinitary confluence implies topological confluence. In order to show the equivalence of the two notions
for rewriting systems over commutative formal power series, we thus have to show the converse. For
that, we consider a topological rewriting system on K[[x1, · · · , xn]], where the rewriting relation is
induced by a subset G ⊆ K[[x1, · · · , xn]] and an order on monomials that is compatible with the degree.
In other words, we have a rewriting step f → h, if we can substitute in f a leading monomial of an
element of G and replace it with the corresponding remainder to get h. We assume that this rewriting
relation is topologically confluent, meaning that whenever a commutative formal power series f rewrites
after finitely many rewriting steps into two commutative formal power series g and h, then the latter
rewrite after possibly infinite rewriting steps into a common limit ℓ. Pictorially, we have

f

g h

ℓ

⋆ ⋆

where
⋆
→ and represent finite rewriting sequences and rewriting sequences that have well-defined

limits for the (x1, · · · , xn)-adic topology τδ, respectively. Infinitary confluence is thus represented by

f

g h

ℓ

Hence, we have to prove that if we assume topological confluence only, the dashed arrows always exist
in the last diagram. The crucial observation is that since commutative formal power series ideals are
closed for τδ, the elements f − g and f − h, and thus also g − h, belong to the ideal I generated by G.
Since the assumption of topological confluence is equivalent to the fact that G is a standard basis of I,
leading monomials of elements of I are always divisible by leading monomials of elements of G, so that
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we can rewrite simultaneously g and h as long as we obtain different results:

f

g h

g1 h1

...
...

gk hk

The rewriting process stops if gk = hk at some step k, in such case the dashed arrows are constructed.
If not, we show that the sequences (gk)k∈N

and (hk)k∈N
are in fact Cauchy sequences for the metric δ

and thus, have limits. The last part of the proof is that these two limits are equal and our main result
is stated as follows.

Theorem 4.2.2. Let G ⊆ K[[x1, · · · , xn]] be a set of formal power series, < be a monomial
order that is compatible with the degree, and (K[[x1, · · · , xn]], τδ,→) be the induced topological
rewriting system. Then, → is τδ-confluent if and only if it is infinitary confluent.

2. CONVENTIONS AND NOTATIONS

In this section, we recall the construction of algebras of commutative formal power series and the
notion of standard basis for an ideal of commutative formal power series.

In the next section, we will consider non-commutative formal power series. From now on, we will
drop the adjective ”commutative” when we consider commutative formal power series, and simply specify
the adjective “non-commutative” when we consider non-commutative formal power series.

2.1. Formal power series algebras

Throughout this paper, we fix a positive integer n, a set of indeterminates {x1, · · · , xn}, and a
field K. We denote by [x1, · · · , xn] the free monoid generated by {x1, · · · , xn} and by K[x1, · · · , xn] the
algebra of polynomials with indeterminates {x1, · · · , xn} and coefficients in K. We denote by deg(m) the
degree of a monomial m ∈ [x1, · · · , xn], i.e., if m = xµ1

1 · · ·xµn
n with non-negative integers µ1, · · · , µn,

then deg(m) = µ1+ · · ·+µn. Given a polynomial f ∈ K[x1, · · · , xn], we denote by 〈f,m〉 the coefficient
of m in f . Let supp(f) be the support of f , defined as the set of monomials that occur in f :

supp(f) := {m ∈ [x1, · · · , xn], 〈f,m〉 6= 0} .

We denote by K[[x1, · · · , xn]] the algebra of formal powers series with indeterminates {x1, · · · , xn}
and coefficients in K, defined as the Cauchy completion of K[x1, · · · , xn] for the distance δ defined by

∀f, g ∈ K[x1, · · · , xn], δ(f, g) :=
1

2val(f−g)
, (1)

where, for h ∈ K[x1, · · · , xn], val(h) denotes the lowest degree of the monomials that are in supp(h).
The coefficient of m ∈ [x1, · · · , xn] in a formal power series f ∈ K[[x1, · · · , xn]] is still written 〈f,m〉.

4



2.2. Standard bases of formal power series ideals

Throughout this section, we fix a monomial order < on [x1, · · · , xn], that is a well-order such that
for all monomials m1,m2,m3 ∈ [x1, · · · , xn], we have the implication

m1 < m2 ⇒ m1 ·m3 < m2 ·m3.

We say that < is compatible with the degree, if for all monomials m1,m2 such that deg(m1) < deg(m2) it
follows that m1 < m2. We denote by <op the opposite order of <. For a non-zero f ∈ K[[x1, · · · , xn]],
we define the leading monomial and the leading coefficient, written lm(f) and lc(f), as the greatest
monomial for <op that occur in f and the coefficient of lm(f) in f , respectively, i.e., we have:

lm(f) := max
<op

supp(f), lc(f) := 〈f, lm(f)〉.

We define the remainder of f as:
r(f) := lc(f) lm(f)− f.

Notice that either r(f) = 0 or lm(r(f)) <op lm(f). Moreover, we verify the following properties:

• ∀f ∈ K[[x1, · · · , xn]] \ {0}, ∀m ∈ [x1, · · · , xn], lm(m× f) = m · lm(f),

• ∀f, g ∈ K[[x1, · · · , xn]] \ {0}, lm(f + g) <op max<op{lm(f), lm(g)},

• ∀f ∈ K[[x1, · · · , xn]] \ {0}, ∀λ ∈ K \ {0}, lm(λf) = lm(f).

Definition 2.2.1. Let I ⊆ K[[x1, · · · , xn]] be a formal power series ideal and let < be a monomial
order on [x1, · · · , xn]. A standard basis of I with respect to < is a subset G ⊆ I such that for every
non-zero formal power series f ∈ I, there exists g ∈ G such that lm(g) divides lm(f).

Recall from [7, Section 6.4] that for every ideal I ⊆ K[[x1, · · · , xn]], there always exists a finite
standard basis of I.

3. TOPOLOGICAL PROPERTIES OF FORMAL POWER SERIES

IDEALS

In this section, we provide a constructive proof of the fact that formal power series ideals are closed
for the (x1, · · · , xn)-adic topology, induced by the metric δ defined in the previous section. This is
a particular case of a more general result about Zariski rings [15]. We also recall from [6] that for
non-commutative formal power series, it exist ideals that are not closed.

3.1. Closure in the commutative case

Let us consider an ideal I ⊆ K[[x1, · · · , xn]] and the (x1, · · · , xn)-adic topology τδ, induced by the
metric δ. We shall prove that I is closed for τδ. To do that, we will work with an arbitrary standard
basis of I, so that we fix a monomial order < on [x1, · · · , xn] and a finite standard basis G = {s1, · · · , sℓ}
of I with respect to <.

Given a subset S ⊆ K[[x1, · · · , xn]], we denote by lm(S) the set of leading monomials of non-zero
elements of S with respect to <op:

lm(S) := {lm(f), f ∈ S \ {0}}.

We start by showing the following result, in which I denotes the topological closure of I for τδ.
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Proposition 3.1.1. If the monomial order < is compatible with the degree, then lm(I) = lm(I).

Proof. Since I ⊆ I, we clearly have lm(I) ⊆ lm(I). Let us show the converse inclusion. Let f ∈ I be
a non-zero formal power series. Then there exist formal power series in I arbitrarily close to f for the
metric δ, in particular, there exists g ∈ I such that

δ(g, f) <
1

2deg(lm(f))
,

meaning that deg(lm(g − f)) > deg(lm(f)). Since the order < is assumed to be compatible with the
degree, we get lm(g − f) > lm(f). Thus, for any monomial m ≤ lm(f), we have 〈g − f,m〉 = 0, hence,
we have 〈g,m〉 = 〈f,m〉. By definition of lm(f), it follows that, on one hand, g is non-zero and, on the
other hand, lm(g) = lm(f). Hence, lm(f) ∈ lm(I), which ends the proof.

Remark 3.1.2. In Theorem 3.1.6, we will show that I is closed, from which we get that lm(I) = lm(I)
is true for any monomial order. However, we were not able to provide a proof of this fact that works
for monomial orders that are not assumed to be compatible with the degree.

In order to show that I is closed in K[[x1, · · · , xn]], we have to show that I is included in I, i.e.,
every f ∈ I belongs to I. For that, we are going to use Proposition 3.1.1 to construct, for any formal
power series f in I, a tuple (fi)1≤i≤ℓ of formal power series such that f = f1s1 + · · ·+ fℓsℓ. This will
suffice to prove that f belongs to I since the si are elements of I.

Fix f ∈ I and assume from now on that the monomial order is compatible with the degree. Note
that the latter assumption is not restrictive since we can choose the monomial order we want and work
with it to achieve our goal. Let us construct inductively:

• a sequence N ∋ k 7→
(

f
(k)
i

)

1≤i≤ℓ
of tuples of formal power series,

• a sequence (Fk)k∈N
of formal power series in I and (mk)k∈N

the corresponding sequence of leading
monomials, i.e., for all k ∈ N, mk := lm(Fk),

• a sequence (ik)k∈N
of indices in J1, · · · , ℓK and a sequence (qk)k∈N

of monomials.

Base case: we let, for any i ∈ J1, · · · , ℓK, f
(0)
i := 0. Notice how we obtain f −

∑ℓ
i=1 f

(0)
i si ∈ I.

Induction step: assume the sequence is defined up to and including k ∈ N in such a way that:

Fk := f −
ℓ
∑

i=1

f
(k)
i si ∈ I.

• If Fk = 0, we then have f = f1s1 + · · · + fℓsℓ, where si ∈ I and fi = f
(k)
i ∈ K[[x1, · · · , xn]].

Hence, f ∈ I and it is over.

• Otherwise, the leading monomial mk := lm(Fk) is well-defined. Since Fk ∈ I and < is compat-
ible with the degree, we have mk ∈ lm(I) by Proposition 3.1.1. Then, as G is a standard basis
of I with respect to <, there exists ik ∈ J1, · · · , ℓK and qk ∈ [x1, · · · , xn] such that:

mk = lm(sik) · qk. (2)

We then defined the (k + 1)’th tuple in the sequence as:

∀i ∈ J1, · · · , ℓK \ {ik}, f
(k+1)
i := f

(k)
i ,

6



and:

f
(k+1)
ik

:= f
(k)
ik

+
lc(Fk)

lc(sik)
qk.

Notice that:

Fk+1 := f −
ℓ
∑

i=1

f
(k+1)
i si,

= f − f
(k)
ik

sik −
lc(Fk)

lc(sik)
qk × sik −

ℓ
∑

i=1
i6=ik

f
(k)
i si,

=

(

f −
ℓ
∑

i=1

f
(k)
i si

)

−
lc(Fk)

lc(sik)
qk × sik ,

= Fk −
lc(Fk)

lc(sik)
qk × sik .

By induction hypothesis, we have Fk ∈ I and since sik ∈ I ⊆ I, we get Fk+1 ∈ I.

If at any step k, we get Fk = 0, we obtain f ∈ I as explained above. Thus, assume from now on
that, for all k ∈ N, we have Fk 6= 0.

Lemma 3.1.3. The sequence of monomials (mk)k∈N
is strictly decreasing for the opposite order <op.

Proof. By construction of ik and qk, we find:

qk × sik = lc(sik) (lm(sik ) · qk)− qk × r(sik ) = lc(sik)mk − qk × r(sik ).

Hence, since Fk = lc(Fk)mk − r(Fk):

Fk+1 = Fk −
lc(Fk)

lc(sik)
qk × sik ,

= lc(Fk)mk − r(Fk)− lc(Fk)mk +
lc(Fk)

lc(sik)
qk × r(sik ),

=
lc(Fk)

lc(sik)
qk × r(sik )− r(Fk).

And thus, from the properties of leading monomials given earlier, we get

mk+1 = lm(Fk+1) = lm

(

lc(Fk)

lc(sik)
qk × r(sik )− r(Fk)

)

≤op max
<op

{qk · lm(r(sik )), lm(r(Fk))} ,

unless, either r(sik ) or r(Fk) is zero, in which case one of the leading monomial is ill-defined. In that
case, we have mk+1 ≤op r where r is either qk · lm(r(sik )) or lm(r(Fk)) according to which of the
remainders is well-defined; note how both remainders cannot be simultaneously zero since Fk+1 6= 0. It
then follows from the properties of remainders that:

• qk · lm(r(sik )) <op qk · lm(sik) = mk if r(sik ) is non-zero and,

• lm(r(Fk)) <op lm(Fk) = mk if r(Fk) is non-zero.

Hence, in the end, we get: mk+1 <op mk.
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Let us now define a family of ℓ sequences
(

q
(k)
1

)

k∈N

, · · · ,
(

q
(k)
ℓ

)

k∈N

containing monomials or zeros

as follows: for any i ∈ J1, · · · , ℓK define q
(0)
i = 0 and then for any k ∈ N, fix:

q
(k+1)
i :=

lc(sik)

lc(Fk)

(

f
(k+1)
i − f

(k)
i

)

.

Hence, for any k ∈ N and i ∈ J1, · · · , ℓK, two options arise:

• either i 6= ik, in which case f
(k+1)
i = f

(k)
i and thus q

(k+1)
i = 0,

• or i = ik and then f
(k+1)
i = f

(k)
i + lc(Fk)

lc(sik )
qk, and so q

(k+1)
i = qk.

In other words, for any i ∈ J1, · · · , ℓK and any k ∈ N, the monomial q
(k+1)
i is non-zero if and only if the

monomial mk has been “eliminated” at Step (2) by choosing lm(si). These sequences then verify for
any i ∈ J1, · · · , ℓK and any k ∈ N:

f
(k)
i =

k
∑

j=1
ij=i

〈f
(k)
i , q

(j)
i 〉q

(j)
i .

This exhibits, with i and k fixed, that the subfamily Q
(k)
i of non-zero elements from

(

q
(j)
i

)

1≤j≤k
is

exactly the support of the formal power series f
(k)
i . Moreover, this family Q

(k)
i is strictly decreasing for

the opposite order <op. Indeed, either the family Q
(k)
i is empty, either it contains a single monomial, in

both cases it is then obvious, or Q
(k)
i =

(

q
(j1)
i , · · · , q

(jr)
i

)

contains r ≥ 2 monomials where j1 < · · · < jr

are indices in J1, · · · , kK. Let us show that for any s ∈ J1, · · · , r − 1K, we have q
(js)
i >op q

(js+1)
i . Indeed,

by definition, we have q
(js)
i = qjs−1 and q

(js+1)
i = qjs+1−1. But, by construction of the family Q

(k)
i , the

indices chosen at the step (2) for ks := js− 1 and k′s := js+1− 1 verify iks
= ik′

s
= i, and so we have the

equalities mks
= lm(si) · qks

and mk′

s
= lm(si) · qk′

s
. But ks < k′s and the sequence (mk)k∈N

is strictly
decreasing for <op from Lemma 3.1.3, and so lm(si) · qks

>op lm(si) · qk′

s
, which implies qks

>op qk′

s
.

For i ∈ J1, · · · , ℓK fixed,
(

Q
(k)
i

)

k∈N

satisfies for all k2 > k1, either Q
(k1)
i = Q

(k2)
i or Q

(k1)
i ( Q

(k2)
i in

such a way that any element in the second family which is not in the first one is smaller for <op than

any element of the family Q
(k1)
i . In other words, we can construct the family Q

(∞)
i =

⋃

k≥1 Q
(k)
i which

is strictly decreasing for <op.

These facts on these new sequences entail the following proposition.

Proposition 3.1.4. For any i ∈ J1, · · · , ℓK fixed, the sequence
(

f
(k)
i

)

k∈N

is a Cauchy sequence.

Proof. Using the definition of the sequence
(

q
(k)
i

)

k∈N

, we obtain

f
(k+1)
i − f

(k)
i =

lc(Fk)

lc(sik)
q
(k+1)
i ,

in such a way that for any positive integers k1 < k2, we get:

f
(k2)
i − f

(k1)
i =

k2−1
∑

j=k1

(

f
(j+1)
i − f

(j)
i

)

=

k2−1
∑

j=k1

lc(Fj)

lc(sij )
q
(j+1)
i . (3)

Thus, either the sequence
(

f
(k)
i

)

k∈N

is stationary, it is the case if and only if the index i has been

chosen only finitely many times among the infinite times we went through the step (2), and in which
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case the sequence is obviously a Cauchy sequence. Or the sequence is not stationary and then there

will always exist k2 > k1 such that δ
(

f
(k2)
i , f

(k1)
i

)

> 0. However, for any real number ε > 0, we can fix

Kε := min

{

k ∈ N \ {0}, q
(k)
i 6= 0 and deg

(

q
(k)
i

)

> log2

(

1

ε

)}

.

The integer Kε is well-defined since
(

f
(k)
i

)

k∈N

is assumed non-stationary and the family Q
(∞)
i , which

contains all non-zero q
(k)
i , is strictly decreasing for <op, so that the degrees of the monomials from Q

(∞)
i

are unbounded because there are finitely many variables and the order is compatible with the degree.

It follows that, for any k2 > k1 ≥ Kε, either f
(k2)
i = f

(k1)
i in which case δ

(

f
(k2)
i , f

(k1)
i

)

= 0 < ε, or, the

monomial lm
(

f
(k2)
i − f

(k1)
i

)

is well-defined and satisfies, by formula (3):

lm
(

f
(k2)
i − f

(k1)
i

)

≤ max
<op

{

q
(j+1)
i , q

(j+1)
i 6= 0 and k1 ≤ j < k2

}

.

This maximum is well-defined because the set of the right hand side of the inequality is finite and

non-empty since f
(k2)
i 6= f

(k1)
i . Denoting by q

(j0+1)
i that maximum, we get j0 +1 > k1 ≥ Kε. Since the

family Q
(∞)
i is strictly decreasing for <op, we have q

(j0+1)
i <op q

(Kε)
i , and thus

deg
(

q
(j0+1)
i

)

≥ deg
(

q
(Kε)
i

)

> log2

(

1

ε

)

,

because the order is compatible with the degree. Since q
(j0+1)
i = lm

(

f
(k2)
i − f

(k1)
i

)

, the formula means

δ
(

f
(k2)
i , f

(k1)
i

)

< ε.

Since this is true for every k2 > k1 and every ε > 0, the sequence
(

f
(k)
i

)

k∈N

is a Cauchy sequence.

From Proposition 3.1.4, since K[[x1, · · · , xn]] is Cauchy-complete, for any i ∈ J1, · · · , ℓK, the se-

quence
(

f
(k)
i

)

k∈N

converges to a limit we denote f
(∞)
i .

Definition 3.1.5. The elements
(

f
(∞)
1 , · · · , f

(∞)
ℓ

)

are called the limit coefficients of f relative to G.

We are now able to prove the main result of the section.

Theorem 3.1.6. Let I ⊆ K[[x1, · · · , xn]] be a formal power series ideal, G = {s1, · · · , sℓ} be a finite
standard basis of I with respect to a monomial order which is compatible with the degree, and f be
an element in the topological closure of I for the (x1, · · · , xn)-adic topology. Then, the limit coeffi-

cients
(

f
(∞)
1 , · · · , f

(∞)
ℓ

)

of f relative to G verify:

f = f
(∞)
1 s1 + · · ·+ f

(∞)
ℓ sℓ.

In particular, I is closed for the (x1, · · · , xn)-adic topology.

Proof. By continuity of algebraic operations, the sequence
(

f −
∑ℓ

i=1 f
(k)
i si

)

k∈N

converges to

lim
k→∞

(

f −
ℓ
∑

i=1

f
(k)
i si

)

= f −
ℓ
∑

i=1

f
(∞)
i si.

9



But then, on one hand:

lim
k→∞

δ

(

f −
ℓ
∑

i=1

f
(k)
i si, 0

)

=
1

2
limk→∞ deg

(

lm
(

f−
∑

ℓ
i=1 f

(k)
i

si

)) =
1

2limk→∞ deg(mk)
.

On the other hand, Lemma 3.1.3 shows that the sequence (mk)k∈N
is strictly decreasing for <op. Thus,

since the order is compatible with the degree, the sequence (deg(mk))k∈N
tends to infinity, and thus,

we have:

0 = lim
k→∞

δ

(

f −
ℓ
∑

i=1

f
(k)
i si, 0

)

= δ

(

lim
k→∞

(

f −
ℓ
∑

i=1

f
(k)
i si

)

, 0

)

= δ

(

f −
ℓ
∑

i=1

f
(∞)
i si, 0

)

.

We finally get f = f
(∞)
1 s1 + · · ·+ f

(∞)
ℓ sℓ, which proves that f belongs to I.

3.2. A counter-example in the non-commutative case

In this section, we recall from [6] that ideals of non-commutative formal power series algebras are
not necessarily closed. We also explain why the proof given in the previous section does not translate
in the non-commutative case.

Non-commutative formal power series are constructed in the same way as commutative ones, where
we replace the polynomial algebra K[x1, · · · , xn] by the tensor algebra K〈x1, · · · , xn〉 over the vector
space with basis {x1, · · · , xn}. As in the commutative case, the distance δ on K〈x1, · · · , xn〉 is defined
by formula δ(f, g) := 2−val(f−g), and K〈〈x1, · · · , xn〉〉 is the Cauchy-completion of K〈x1, · · · , xn〉 for δ.

Let K〈〈x, y〉〉 be the algebra of non-commutative formal power series in two variables x and y and
consider the two-sided ideal I generated by y. Then, from [6, Lemma 1.2], the series

∑

n∈N

xnyxn,

does not belong to I, but it belongs to the topological closure I of I for the (x, y)-adic topology induced
by δ. That shows that I is not closed in K〈〈x, y〉〉 for the (x, y)-adic topology.

Notice how this situation would not arise in the commutative case. Indeed, we have for commutative
monomials:

∑

n∈N

xnyxn =
∑

n∈N

x2ny =

(

∑

n∈N

x2n

)

y ∈ I.

The first point where the procedure described in the previous section fails to translate in the non-
commutative case is that a non-commutative formal power series ideal does not necessarily admit a
finite standard basis. However, even if such a finite standard basis exists, our procedure still does not
translate in the non-commutative setting: indeed, Step (2) would require two monomials qleftk and qrightk

to factorise the leading monomial mk instead of a single one; similarly, we would need two formal power

series f
left(k)
i and f

right(k)
i to obtain the relation at each step k:

f −
ℓ
∑

i=1

f
left(k)
i sif

right(k)
i ∈ I.

The process would then yield two limit formal power series that describe f in terms of the si. However,
it would not be possible to factorise a priori the si in such a way that f becomes a combination of them
with formal power series coefficients, i.e., f would not be in the ideal I.
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4. APPLICATION TO TOPOLOGICAL REWRITING THEORY

In this section, we show that topological confluence and infinitary confluence are equivalent notions
for rewriting over formal power series. These two properties provide characterisations of standard bases.

4.1. Topological and infinitary confluence

In this section, we recall the definition of topological rewriting systems as well as various notions of
confluence associated with them. We also show how these notions are related to each other.

We recall that a topological rewriting system is a triple (A, τ,→), where (A, τ) is a topological space

and →⊆ A × A is a binary relation on A, called rewriting relation. We denote by
⋆
→ the symmetric

transitive closure of → and the topological closure of
⋆
→ for the product topology τAdis×τ on A×A,

where τAdis is the discrete topology on A. In other words, we have a
⋆
→ b if and only if there exists an

integer k ∈ N and elements a0, · · · , ak ∈ A, such that a = a0 → a1 → · · · → ak = b. The integer k is
called the length of the sequence and the case k = 0 means that a = b. Moreover, we have a b if and
only if every neighbourhood V of b for τ contains b′ ∈ V such that a

⋆
→ b′. An element a ∈ A is called

a normal form for → if whenever we have a b, then b = a.

Remark 4.1.1. In the case of discrete rewriting, i.e., when τ = τAdis, a normal form for → is a a ∈ A
such that there is no b ∈ A such that a → b. When there is no a ∈ A such that a → a, then our
definition of normal form is stronger than the one used in the discrete case, since a → b implies a b.
In general, the discrete definition of normal form is strictly weaker than ours. Indeed, if τ = {∅, A} and
the rewriting relation → is empty, then every a ∈ A is a normal form in the discrete sense but not for
ours, since a b for every b ∈ A. However, in the case where (A, τ) is a Hausdorff space and there is
no a ∈ A such that a → a, then the two definitions are equivalent. Indeed, let a ∈ A be a normal form
in the discrete sense and let b ∈ A such that a b. Then, every neighbourhood of b contains a b′ such
that a

⋆
→ b′. But since a is a normal form in the discrete sense, we have a = b′, so that a belongs to all

the neighbourhoods of b. Since A is Hausdorff, we get that a = b and so a is also a normal form for our
definition.

Definition 4.1.2. Let (A, τ,→) be a topological rewriting system.

1. The rewriting relation → is said to be confluent if for every a, b, c ∈ A such that we have a
⋆
→ b

and a
⋆
→ c, then there exists d ∈ A such that b

⋆
→ d and c

⋆
→ d:

a

b c

d

⋆ ⋆

⋆ ⋆

2. The rewriting relation → is said to be τ-confluent if for every a, b, c ∈ A such that we have a
⋆
→ b

and a
⋆
→ c, then there exists d ∈ A such that b d and c d:

a

b c

d

⋆ ⋆

11



3. The rewriting relation → is said to be infinitary confluent if for every a, b, c ∈ A such that we
have a b and a c, then there exists d ∈ A such that b d and c d:

a

b c

d

Since
⋆
→⊆ , confluence and infinitary confluence both imply τ -confluence. The converse im-

plications are both false in general. A counter-example of a τ -confluent rewriting relation that is not
confluent is given in terms of formal power series in [3, Example 4.1.4]. Examples of τ -confluent rewriting
relations that are not infinitary confluent are given thereafter.

Example 4.1.3. First, consider the real line with two origins, defined as the set

X :=
(

R× {±1}
)

/ ∼,

where ∼ is the equivalence relation generated by (x, 1) ∼ (x,−1), whenever x 6= 0, and equip X by the
quotient topology τ of the induced topology of R2 over R × {±1}. Consider the rewriting relation →
defined by

(

1

2n
, 1

)

=

(

1

2n
,−1

)

→

(

1

2n+1
, 1

)

=

(

1

2n+1
,−1

)

,

for every n ∈ N. This rewriting relation is confluent, hence τ -confluent, because every (x, y) ∈ X
rewrites in one step into at most one element. Moreover, it is not infinitary confluent since we have

(1, 1) = (1,−1)

(

1
2 , 1
)

=
(

1
2 ,−1

)

(

1
4 , 1
)

=
(

1
4 ,−1

)

(0, 1) (0,−1)

and (0,±1) are distinct normal forms for →.
Another counter-example is given by X = [0, 2] ⊆ R with the usual topology τ and → is defined by

1
2n+1

1
2n and 2− 1

2n 2− 1
2n+1

for every n ∈ N. Hence, we have:

0 · · · 1
8

1
4

1
2 1 3

2
7
4

15
8 · · · 2

This rewriting relation is confluent, hence τ -confluent, because every finite rewriting sequence can be
reversed, but it is not infinitary confluent since 0 and 2 are distinct normal forms for →.
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The main reason why the first rewriting relation given in Example 4.1.3 above is not infinitary con-
fluent is because (X, τ) is not a Hausdorff topological space. For the second counter-example provided

in Example 4.1.3, → is τ -confluent in part because it is cyclic, i.e., we have rewriting loops a
⋆
→ a of

length at least 1. An example of a rewriting relation with no rewriting loop of length at least 1 over a
Hausdorff topological space, that is topologically confluent but not infinitary confluent is given in the
following.

Example 4.1.4. Consider X = (N ∪ {∞})× (N ∪ {∞}), equipped with the product topology τ of the
order topology over N ∪ {∞}. A basis for the order topology over N ∪ {∞} is given by the sets

{n ∈ N, a < n < b}, {n ∈ N, n < b}, {n ∈ N ∪ {∞}, a < n},

where a ∈ N and b ∈ N ∪ {∞}. Then, consider the rewriting relation → on X given by

(n,m) → (n+ 1,m) and (n,m) → (n,m+ 1),

whenever n,m ∈ N. The rewriting relation → is confluent, hence τ -confluent, because we have a
rewriting path (n,m)

⋆
→ (n′,m′) if and only if n, n′,m,m′ ∈ N are such that n ≤ n′ and m ≤ m′, so

that we have confluence diagrams:

(n,m)

(n1,m1) (n2,m2)

(max (n1, n2) ,max (m1,m2))

⋆ ⋆

⋆ ⋆

But → is not infinitary confluent since we have

(∞, 0) · · · (2, 0) (1, 0) (0, 0) (0, 1) (0, 2) · · · (0,∞)

and (∞, 0) and (0,∞) are distinct normal forms for →.

4.2. Confluence for rewriting on formal powers series

In this section, we recall the construction of topological rewriting systems over formal power series
and show that in this setting, τ -confluence and infinitary confluence are equivalent properties.

As in the beginning of the paper, we fix a finite set of indeterminates {x1, · · · , xn}. For a given
monomial order < on [x1, · · · , xn] that is compatible with the degree, and a fixed set G of non-zero
formal power series, we define the following rewriting relation → on K[[x1, · · · , xn]]:

λ
(

m · lm(s)
)

+ S →
λ

lc(s)

(

m× r(s)
)

+ S,

where:

• λ ∈ K \ {0} is a non-zero scalar,

• m ∈ [x1, · · · , xn] is a monomial,

• s ∈ G is a non-zero formal power series,

• S ∈ K[[x1, · · · , xn]] is a formal power series such that m · lm(s) 6∈ supp(S).

13



We get a topological rewriting system (K[[x1, · · · , xn]], τδ,→), where τδ is the (x1, · · · , xn)-adic topology
induced by the metric δ defined in (1). Recall from [3, Theorem 4.1.3] that a subset G of K[[x1, · · · , xn]]
is a standard basis of the ideal it generates with respect to the monomial order < if and only if the
rewriting relation → is τδ-confluent. In the following, we shall show that it is also equivalent to → being
infinitary confluent. We denote by I the formal power series ideal generated by G:

I := I(G) ⊆ K[[x1, · · · , xn]].

We first establish the following result, which is the topological adaptation of a well-known result in
the context of Gröbner bases theory [2, Theorem 8.2.7]. In the proof of this result, we use the topological
closure of ideals of formal power series ideals.

Proposition 4.2.1. For all f, g ∈ K[[x1, · · · , xn]], if f g, then f − g ∈ I.

Proof. First, if g = f , then there is nothing to prove. Second, if f → g, then we have

f = λ(m · lm(s)) + S, g =
λ

lc(s)
(m× r(s)) + S,

for λ ∈ K \ {0}, m ∈ [x1, · · · , xn], s ∈ G, and S ∈ K[[x1, · · · , xn]] such that m · lm(s) /∈ supp(S).
Cancellations ensue in the computation of f − g, and we obtain:

f − g =
λ

lc(s)
× s.

But s ∈ G ⊆ I and I is an ideal, therefore f − g ∈ I. Third, if f
⋆
→ g and f 6= g, then by induction on

the length k ≥ 1 of the rewriting sequence f = f0 → f1 → · · · → fk = g, we have f − g ∈ I. Finally, if
we have f g, then for every integer k ∈ N, there exists fk ∈ K[[x1, · · · , xn]] such that

δ(fk, g) <
1

2k
,

and f
⋆
→ fk. The sequence (fk)k∈N

then converges to g. From the third case treated in the proof, for

every k ∈ N, we have f−fk ∈ I, so that f−g = limk→∞(f−fk) belongs to I. Now, from Theorem 3.1.6,
the ideal I is closed, so that f − g ∈ I, which completes the proof.

We are now in position to prove the main result of this section.

Theorem 4.2.2. Let G ⊆ K[[x1, · · · , xn]] be a set of formal power series, < be a monomial order that
is compatible with the degree, and (K[[x1, · · · , xn]], τδ,→) be the induced topological rewriting system.
Then, → is τδ-confluent if and only if it is infinitary confluent.

Proof. We only have to show that if → is τδ-confluent, then it is also infinitary confluent. Hence, we
assume that → is τδ-confluent, which, from [3, Theorem 4.1.3], means that G is a standard basis of the
ideal I = I(G) it generates.

Let f, g, h ∈ K[[x1, · · · , xn]] be formal power series such that:

f

g h

In the following, we shall define two sequences (gk)k∈N
and (hk)k∈N

of elements of K[[x1, · · · , xn]]

such that g
⋆
→ gk and h

⋆
→ hk, for every k ∈ N. Then, we will show that these two sequences are Cauchy

sequences, hence have limits, and that these two limits are equal, which will conclude the proof. We
construct the two sequences by the following recursive procedure.
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Base step: we let g0 := g and h0 := h.

Recursions step: let k ∈ N and assume that we have defined rewriting sequences

g = g0
=
→ g1

=
→ · · ·

=
→ gk, h = h0

=
→ h1

=
→ · · ·

=
→ hk,

where
=
→ is the reflexive closure of →, i.e., a

=
→ b if a = b or if a → b. If we have gk − hk = 0, then

all other terms of the two sequences are equal to gk = hk, i.e., we define the higher terms of the
sequences by gl := gk = hk and hl := hk = gk, for every l ≥ k. Otherwise, if gk − hk 6= 0, we let

mk := lm (gk − hk) .

From Proposition 4.2.1, the formal power series f − g, f −h, g− gk, and h−hk belong to I, so that:

gk − hk = (gk − g) + (g − f) + (f − h) + (h− hk) ∈ I.

Since G is a standard basis of I, there exist s ∈ G and m ∈ [x1, · · · , xn] such that mk = m · lm(s).
Then, we define gk+1 and hk+1 by rewriting the monomial mk if possible, i.e., we let

gk+1 := gk − 〈gk,mk〉

(

mk −
1

lc(s)
(m× r(s))

)

,

hk+1 := hk − 〈hk,mk〉

(

mk −
1

lc(s)
(m× r(s))

)

.

Indeed, we have either gk+1 = gk or gk → gk+1, depending on 〈gk,mk〉 is equal to zero or not, hence
we have gk

=
→ gk+1. In the same manner, we have hk

=
→ hk+1. Since mk ∈ supp(gk −hk), we cannot

have gk+1 = gk and hk+1 = hk. Moreover, notice that mk+1 <op mk because 〈gk,m〉 = 〈hk,m〉 for
every mk <op m and mk, which does not belong to supp(gk+1) ∪ supp(hk+1), rewrites into a series
containing monomials that are strictly smaller than mk for <op, so that 〈gk+1,m〉 = 〈hk+1,m〉 for
every mk ≤op m. Hence, we have mk+1 <op mk. Finally, since gk+1 and hk+1 are equal or are
obtained from gk and hk by rewriting mk into a series containing monomials that are strictly smaller
than mk for <op, we have 〈gk+1,m〉 = 〈gk,m〉 and 〈hk+1,m〉 = 〈hk,m〉 for mk <op m.

If for some k ∈ N we have gk − hk = 0, then letting ℓ = gk = hk, we have g
⋆
→ ℓ and h

⋆
→ ℓ, and thus:

f

g h

ℓ

Now, assume that for every k ∈ N, we have gk −hk 6= 0. Since for each k ∈ N, we have either gk+1 6= gk
or hk+1 6= hk, then at least one of the two sequences is not stationary. However, both of these sequences
are Cauchy sequences. This is obvious if a sequence is stationary. If not, say (gk)k∈N

is not stationary,
we first prove by induction on i ∈ N that for every k ∈ N and for every monomial m such that mk <op m:

∀i ∈ N : 〈gk,m〉 = 〈gk+i,m〉. (4)

For i = 0, this is obvious. Assume (4) for i ∈ N. Since 〈gk+i+1,m〉 = 〈gk+i,m〉 for every monomial m
such that mk+i <op m and since mk+i ≤op mk, because (mk)k∈N

is strictly decreasing for <op, we have

〈gk+i+1,m〉 = 〈gk+i,m〉 = 〈gk,m〉,
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for mk <op m, and the induction is over. As <op is compatible with the degree, from (4), we have:

∀i, k ∈ N : δ (gk, gk+i) ≤
1

2deg(mk)
.

Since (mk)k∈N
is strictly decreasing, we get that this distance goes to 0 as k, i → ∞, i.e., (gk)k∈N

is
a Cauchy sequence. By the same reasoning, we show that (hk)k∈N

is also a Cauchy sequence. Using
the Cauchy-completeness of K[[x1, · · · , xn]], the two sequences have limits, denoted by g∞ and h∞.
Moreover, by construction, we have g g∞ and h h∞.

It remains to show that g∞ = h∞. For every k ∈ N and every monomial m such that mk <op m,
we have 〈gk,m〉 = 〈g∞,m〉 and 〈hk,m〉 = 〈h∞,m〉. Indeed, if for instance 〈gk,m〉 6= 〈g∞,m〉 for some
monomial mk <op m, then from (4), we have 〈gk+i,m〉 6= 〈g∞,m〉 for every i ∈ N, so that

δ (gk+i, g∞) ≥
1

2deg(m)
,

which contradicts the fact that (gk)k∈N
converges to g∞. Finally, since the sequence (mk)k∈N

is strictly
decreasing for <op, for an arbitrary fixed monomial m, there exists an index k such that mk <op m.
From the beginning of the paragraph we have 〈gk,m〉 = 〈g∞,m〉 and 〈hk,m〉 = 〈h∞,m〉. But since
we also have m >op mk = lm (gk − hk), then, we have 〈gk,m〉 = 〈hk,m〉 and thus 〈g∞,m〉 = 〈h∞,m〉.
Since the monomial m was arbitrary, we have g∞ = h∞. Letting ℓ = g∞ = h∞, we thus have:

f

g h

ℓ

Hence, → is infinitary confluent.

As recalled in the beginning of the proof, from [3, Theorem 4.1.3], the rewriting relation → induced
by a monomial order < and a set G of formal power series is τδ-confluent if and only if G is a standard
basis relative to < of the ideal it generates. Hence, we get the following corollary, which is in fact what
was showed in the proof of Theorem 4.2.2.

Corollary 4.2.3. A set G ⊆ K[[x1, · · · , xn]] is a standard basis relative to a monomial order < that
is compatible with the degree of the ideal it generates if and only if the rewriting relation induced by G
and < is infinitary confluent.
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